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Abstract This study applies statistical postprocessing to ensemble forecasts of near-surface
temperature, 24 h precipitation totals, and near-surface wind speed from the global model of the European
Centre for Medium-Range Weather Forecasts (ECMWF). The main objective is to evaluate the evolution of
the difference in skill between the raw ensemble and the postprocessed forecasts. Reliability and sharpness,
and hence skill, of the former is expected to improve over time. Thus, the gain by postprocessing is expected
to decrease. Based on ECMWF forecasts from January 2002 to March 2014 and corresponding observations
from globally distributed stations, we generate postprocessed forecasts by ensemble model output statistics
(EMOS) for each station and variable. Given the higher average skill of the postprocessed forecasts, we
analyze the evolution of the difference in skill between raw ensemble and EMOS. This skill gap remains
almost constant over time indicating that postprocessing will keep adding skill in the foreseeable future.

1. Introduction

Over the last two decades the paradigm in weather forecasting has shifted from being deterministic to
probabilistic [see, e.g., Palmer, 2000; Hamill et al., 2000]. Accordingly, numerical weather prediction (NWP)
models have been run increasingly as ensemble forecasting systems. The goal of such ensemble forecasts
is to approximate the forecast probability distribution by a finite sample of scenarios [Leith, 1974]. Global
ensemble forecast systems, like the European Centre for Medium-Range Weather Forecasts (ECMWF)
ensemble, are prone to probabilistic biases and are therefore not reliable. They particularly tend to be
underdispersive for surface weather parameters [Bougeault et al., 2010; Park et al., 2008]. In order to
correct for forecast underdispersion and bias in NWP ensembles different statistical postprocessing methods
have been developed, of which ensemble model output statistics (EMOS) [Gneiting et al., 2005] is among the
most widely applied. EMOS yields a parametric forecast distribution by linking its parameters to ensemble
statistics. Due to its simplicity and low computational cost, we focus on EMOS for this study.

The ECMWF ensemble is under continuous development, and hence, its forecast skill improves over time
[Buizza et al., 1998, 2007; Richardson et al., 2013; Haiden et al., 2014]. Parts of these improvements may
be due to a reduction of probabilistic biases. From this we deduce the following hypothesis: As the raw
forecasts continuously improve, it is hypothesized that the gap in skill between raw ensemble and postpro-
cessed forecasts narrows, because systematic errors typically captured by postprocessing are reduced by
those improvements. In other words, probabilistic biases, which can be reduced by statistical postprocessing
methods, decrease over time. Assuming that the raw ensemble forecasts continue to improve in the future,
the gap in skill may eventually be closed when the raw ensemble forecasts become reliable and unbiased.

In this work we analyze the evolution of the global performance of the operational ECMWF raw ensem-
ble and the corresponding postprocessed EMOS forecasts for 2 m temperature (T2M), 24 h precipitation
(PPT24), and 10 m wind speed (V10). We verify the forecasts against globally distributed surface synop-
tic observations (SYNOP) data over a period of about 10 years. We first evaluate the monthly average skill
in terms of continuous ranked probability score (CRPS) [Matheson and Winkler, 1976] for both the raw and
the EMOS forecasts. In order to assess the extent to which the results depend on the choice of the post-
processing method, Bayesian model averaging (BMA) [Raftery et al., 2005; Fraley et al., 2010] is additionally
applied to the T2M raw ensemble forecasts. Note that the CRPS is a negatively oriented skill measure (i.e.,
the lower the value the higher the skill). As the CRPS assesses both reliability and sharpness and is a proper
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score [Gneiting and Raftery, 2007], we rely on it for model fitting and verification throughout this study. Note
that skill and reliability are linked in that given constant sharpness an improvement in reliability leads to
an improvement in skill and vice versa. We finally analyze the evolution of the gap in CRPS between raw
ensemble and postprocessed forecasts.

After presenting the data set in section 2, we summarize the methods for postprocessing and for the assess-
ment of the global skill evolution in section 3. In section 4 the results are shown. This is followed by a
discussion in section 5 along with some concluding remarks. Any analyses have been performed using the
statistical software R [R Development Core Team, 2013].

2. Data

We have selected a large number of SYNOP stations for verification to perform a study which covers the
entire globe as ECMWF forecasts are issued on the global domain. SYNOP stations with suspicious or too
many missing data are removed from the data set following the approach used by Pinson and Hagedorn
[2012] with some modifications. The main criterion for removal of a station from the data set for a particular
variable is the percentage of data points that are equal to the previous 10 data points. If this exceeds 20%
a station is considered to be unreliable. In case of PPT24 and V10 this is applied only for nonzero values.
Additionally, T2M stations with values outside the range [-70◦C, 60◦C], PPT24 stations with values outside
[0 mm, 1826 mm] and V10 stations with values outside [0 m/s, 113.2 m/s] are removed. Those ranges extend
from the lowest to the highest measurements recorded on Earth. With these removal criteria, 4160 out of
4586, 2917 out of 2956, and 4387 out of 4509 stations are considered to be of reasonable quality for T2M,
PPT24, and V10, respectively.

In this study we focus on observations for 12 UTC and ECMWF ensemble forecasts initialized at 12 UTC with
lead times of 3, 6, and 10 days. This selection of forecast ranges covers the transition from higher predictabil-
ity at lead time 3 days to considerably lower predictability at 10 days. The raw ensemble consists of the
ECMWF high-resolution (HRES), the corresponding 50-member ensemble (ENS) and the control (CTRL) runs.
During the time period considered (1 January 2002 to 20 March 2014) the forecast model, which is the same
for ENS, HRES, and CTRL, has undergone several upgrades. Additionally, the ENS has been reconfigured
several times over that period. The ECMWF ensemble system is described in detail in Molteni et al. [1996]
and Buizza et al. [2007]. Since for the postprocessed forecasts some data has to be put aside for training (see
section 3), the verification periods for the following analyses are somewhat shorter and extend from January
2004 to March 2014 for T2M and V10, and from January 2007 to March 2014 for PPT24.

3. Methods
3.1. Postprocessing Using EMOS
Post-processing using EMOS converts a raw ensemble of discrete forecasts into a probability distribution.
Let y be the variable to be forecast (here: T2M, PPT24, or V10) and let f = (f1, f2,… , fK )T be the vector of the
K member raw ensemble forecasts (here: HRES, ENS, and CTRL). Then the EMOS predictive density can be
written as

y|f ∼ g(m, 𝜎), (1)

where g(⋅) is a parametric density function with location and scale parameters m and 𝜎, respectively, which
depend on the raw ensemble.
3.1.1. Temperature
For T2M forecasts g(⋅) is a normal density distribution with mean m and variance 𝜎2. Here we use a variant
of the original EMOS approach similar to the one proposed by Scheuerer and Büermann [2014] where the
departures of observed temperatures from their climatological means are related to those of the forecasts.
Specifically, let T = {t1,… , tn} be a training period of n days preceding the forecast initialization and denote
by ftk the forecast of the kth ensemble member and by yt the observation on day t ∈ T . As a first step, we fit
a regression model

ytj
= c0 + c1 sin

(
2𝜋j
365

)
+ c2 cos

(
2𝜋j
365

)
+ 𝜀tj

, j = 1,… , n (2)
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which captures the seasonal variation of T2M. The residual terms 𝜀tj
are likely correlated over time, but for

simplicity an ordinary least squares fit is performed. We denote by ỹt the fitted value of this periodic
regression model on day t and interpret it as the climatological mean temperature on this day. This model
can easily be extrapolated to future days td+1, td+2,… The above regression includes both a sine term and
a cosine term which is equivalent to a cosine model with variable phase, and amplitude. Since j = 1,… , n
is just a numbering of the days in T , different training periods have different phase parameters and hence,
c1 and c2 evolve over the calendar year. We fit the same type of model also to the ensemble mean, control,
and high-resolution run and obtain climatological means f̃ENS,t, f̃CTRL,t , and f̃HRES,t . The mean of the forecast
distribution is then

m = ỹ + a1(fHRES − f̃HRES) + a2(fCTRL − f̃CTRL) + a3(fENS − f̃ENS). (3)

The variance of the forecast distribution is linked to the raw ensemble by

𝜎2 = b0 + b1s2, (4)

where s2 = 1
K

∑K
k=1(fk − 1

K

∑K
k=1 fk)2. The parameters 𝜽T2M = (a1, a2, a3, b0, b1)T are constrained to be

nonnegative, and hence, ak∕
∑K

k=1 ak can be understood as the weight of model k.
3.1.2. Precipitation
For PPT24 we use the EMOS approach proposed by Scheuerer [2014], where g(⋅) is a left-censored (at zero)
generalized extreme value (GEV) distribution. While the shape parameter 𝜉 of the GEV is kept constant
(𝜉 = 0.2), the location and the scale parameters m and 𝜎 are linked to the raw ensemble via

m = a0 + a1fHRES + a2fCTRL + a3fENS + a4𝜋0, (5)

𝜎 = b0 + b1MDf , (6)

where 𝜋0 is the fraction of ensemble members predicting zero precipitation and MDf ∶= K−2 ∑K
k,k′=1 |fk − fk′ |

is the ensemble mean difference. Again, the parameters are denoted by 𝜽PPT24 = (a0,… , a4, b0, b1)T . The
parameters a1, a2, a3, b0, b1 are constrained to be nonnegative, and hence, the normalized parameters a1 to
a3 can be understood as weights.
3.1.3. Wind Speed
For V10 we use a modified version of the EMOS model based on a left-truncated (at zero) normal distribu-
tion by Thorarinsdottir and Gneiting [2010]. A truncated normal distribution on the square root-transformed
space seems to be an appropriate choice for g(⋅), as it outperformed both the untransformed truncated
normal model and a model with predictive gamma distributions in preliminary tests. We model the
distribution of

√
y by a truncated normal distribution with parameters:

m = a0 + a1

√
fHRES + a2

√
fCTRL + a3

√
fENS (7)

𝜎2 = b0 + b1MD√
f
, (8)

where MD√
f
∶= K−2 ∑K

k,k′=1 |√fk −
√

fk′ |. The parameters 𝜽V10 = (a0,… , a3, b0, b1)T are constrained to be
nonnegative; thus, the normalized parameters a1 to a3 can be understood as model weights.
3.1.4. Model Fitting and Evaluation
For all three variables the parameter vector 𝜽̂ is estimated by CRPS minimization over the training period
T . Rationales for using the CRPS can be found in, e.g., Hersbach [2000], Gneiting et al. [2005], or Gneiting
and Raftery [2007]. The training period for each verification day consists of the n days preceding the initial-
ization date. Tests using a subset of European stations indicate that for T2M forecasts a training period of
720 days is appropriate, while for PPT24 and V10 training periods of 1816 and 365 days, respectively,
performed best. Following Scheuerer [2014], we try to avoid overfitting by using the parameter estimates
𝜽̂t−1 as starting values for the estimation of 𝜽̂t for verification day t and then stopping the optimization pro-
cess after a few iterations. This sliding window model fitting approach generally results in good parameter
estimates, but it may be affected by sudden changes in the raw ensemble models during the training period.
Nevertheless, the good performance of the postprocessed forecasts as shown in section 4 indicates that this
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effect can be neglected for the majority of stations. The average CRPS over the training period T is calculated
by CRPS = T−1 ∑

T crpst , where the crps for a single training day is given by

(9)

where P denotes the cumulative predictive distribution function and y is the associated observation
[Hersbach, 2000; Gneiting et al., 2007]. A closed-form expression for the crps for the normal model for
T2M can be found in Gneiting et al. [2005]. For the censored GEV model used for PPT24 a closed-form
expression has been derived by Friederichs and Thorarinsdottir [2012] and Scheuerer [2014]. For the square
root-transformed truncated normal model used for V10, the crps can be calculated using formulae by
Gneiting et al. [2004]. With q = Φ(−𝜇∕𝜎), p = 1 − q, and w = (

√
y − 𝜇)∕𝜎, the crps can be written as follows:

crps(y, 𝜇, 𝜎) = 𝜎

p2

(
𝜎 − 2𝜇√

𝜋

)
− 2𝜎2

{
w2

2
− 1

p

[
(w2 − 1)Φ(w) + w𝜑(w)

]
+

qw2

p

}
− 2𝜎𝜇

{
w − 2

p
[wΦ(w) + 𝜑(w)] +

2qw
p

}
+

q𝜎2

p2

[
−1

q
𝜑

(−𝜇
𝜎

)2
+ q

(
𝜇2

𝜎2
− 1

)]
+ 2𝜎𝜇

p2
√
𝜋
Φ

(
−
√

2𝜇
𝜎

)
−

𝜇2q2

p2
, (10)

where Φ(⋅) and 𝜑(⋅) denote cumulative and probability density functions of the standard normal
distribution, respectively.

3.2. Postprocessing Using BMA for T2M
As T2M predictions can be described well by a normal distribution, BMA parameters can be estimated easily
using the R package ensembleBMA [Fraley et al., 2014]. Hence, for T2M BMA can be used as an
alternative to EMOS even on the global set of stations. BMA combines the raw ensemble forecasts to a
mixture distribution of the form

y|f ∼
K∑

k=1

wkg(y ∣ fk), (11)

where w1,… ,wK are model weights and g(y ∣ fk) is a parametric distribution given that model k is best. In
order to account for exchangeable ensemble members and to include a bias correction the BMA model is
parameterized by

y|f ∼
I∑

i=1

Ji∑
j=1

wig(y ∣ ai0 + ai1fi,j, 𝜎i), (12)

where I is the number of subgroups of the ensemble within which all members are exchangeable and
Ji is the number of members in this group [Fraley et al., 2010]. In case of T2M g(⋅) is a normal kernel
distribution. The parameters âi0, âi1, i = HRES,CTRL, ENS are estimated by linear regression and ŵi, 𝜎̂i by the
Expectation-Maximization algorithm [Dempster et al., 1977; McLachlan and Krishnan, 1997]. The BMA models
for this study are fitted using a training period of 365 days prior to the verification day. The estimates for day
t − 1 are used as starting values for the estimation of the parameter values for day t.

3.3. Global CRPS Analysis
As stated in the introduction, the main objective of this study is to analyze whether the gap in CRPS between
the raw ensemble and the post-processed forecast narrows over time. This is assessed station-wise using
both a parametric and a non-parametric approach. For the former, we fit the following regression model to
the monthly time series of CRPS differences (ΔCRPSt = CRPSraw,t − CRPSEMOS,t) :

ΔCRPSt = 𝛽0 + 𝛽1t + 𝛽2 sin
(2𝜋t

12

)
+ 𝛽3 cos

(2𝜋t
12

)
+ 𝜖, 𝜖 ∼  (0, 𝜎2) (13)

where ΔCRPSt is the predictand, t is now the time in months, and 𝜎2 denotes the error variance. For the
latter, we use Kendall’s 𝜏 correlation coefficient and the associated test statistics [Mann, 1945] as
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Figure 1. (a and b) Monthly averages of ΔCRPS between raw ensemble and EMOS forecasts with a lead time of 6 days, for example, at stations with a decreasing
and an increasing gap. The red solid lines correspond to the fits of the regression model stated in equation (13); the red dashed lines to their linear parts. (c to k)
The monthly (in black) and yearly (in red) global average CRPS of the raw ensemble and EMOS forecasts for T2M, PPT24, and V10.

implemented in the R package Kendall [McLeod, 2011]. In order to correct for seasonal effects, we
calculate the 𝜏 statistics using the residuals of the following model:

ΔCRPSt = 𝛾0 + 𝛾1 sin
(2𝜋t

12

)
+ 𝛾2 cos

(2𝜋t
12

)
+ 𝜖, 𝜖 ∼  (0, 𝜎2) (14)

Note that negative 𝜏 values indicate a negative trend and positive values a positive one. Figures 1a and 1b
show the regression lines estimated by model (13) for monthly averages of ΔCRPS and the corresponding
Kendall’s 𝜏 test statistics for an example with decreasing and increasing gap.

4. Results
4.1. General Features of 𝚫CRPS
Before assessing the stationwise evolution of ΔCRPS over time, we consider first the evolution of global
average CRPS values of both raw ensemble and EMOS forecasts. As shown in Figures 1c to 1k the average
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Figure 2. Box plots over all stations representing the 5, 25, 50, 75, and 95% quantiles of (left) the average CRPS
differences between raw ensemble and EMOS forecasts and (right) the slope coefficients of the linear model fits and the
Kendall’s 𝜏 statistics of monthly ΔCRPS averages. Depicted are (a) T2M, (b) PPT24, and (c) V10; the red dashed lines on
the right-hand panels indicate the zero line.

CRPS for both forecasts increases with increasing lead time regardless of the variable of interest. Note that all
three variables exhibit seasonal oscillations in average CRPS. In the case of T2M and V10 postprocessing by
EMOS obviously improves the average CRPS, whereas for PPT24 the improvement is much smaller relative
to its seasonal oscillations in average CRPS. In any case, further analyses on the temporal evolution of ΔCRPS
should correct for seasonal effects. Note that ΔCRPS depends on the performance of the postprocessing
method selected. If alternative postprocessing methods perform better, ΔCRPS will be further increased by
using them.

Let us now focus on a stationwise analysis. According to the box plots on the panels on the left of Figures 2a
to 2c, more than 95% of the stations benefit from EMOS in terms of ΔCRPS averaged over the entire
verification period regardless of lead time and variable of interest. Note also the positive skewness and the
decrease in ΔCRPS with increasing lead time. The box plots on the panels on the right of Figures 2a to 2c
describe the empirical distributions among the set of all stations considered of the slope coefficients 𝛽1 and
the 𝜏 test statistics of ΔCRPS against time for the parametric and the nonparametric model, respectively. For
T2M and, in particular, PPT24 negative trends are more common than positive trends, whereas the
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Table 1. Percentages of Stations Showing No, Negative, or Positive Trend in ΔCRPSa

Parametric Model Kendall’s 𝜏 Statistics

T2M PPT24 V10 T2M PPT24 V10

EMOS BMA EMOS EMOS EMOS BMA EMOS EMOS

Forecast lead time

3 days

no significant trend 42% 42% 76% 41% 44% 43% 77% 42%
negative trend 34% 34% 19% 31% 32% 32% 18% 29%
positive trend 24% 25% 5% 28% 24% 25% 5% 29%

6 days

no significant trend 46% 48% 82% 43% 48% 49% 82% 45%
negative trend 31% 28% 14% 31% 29% 27% 13% 29%
positive trend 23% 24% 4% 26% 23% 24% 5% 27%

10 days

no significant trend 54% 58% 83% 45% 54% 58% 82% 46%
negative trend 27% 23% 11% 31% 26% 23% 11% 28%
positive trend 19% 18% 6% 25% 20% 19% 7% 26%

aPercentages of stations (totals are 4160 (T2M), 2917 (PPT24), and 4387 (V10)) showing no, negative, or positive trend in monthly ΔCRPS values against time
at a significance level of 0.05.

corresponding box plots for V10 are almost symmetric around the zero line. In general, the medians of the
𝛽1 and the 𝜏 values seem to converge to zero with increasing lead time.

4.2. Are There Any Significant Temporal Trends?
The above results indicate a tendency of a decrease in ΔCRPS over time at least for T2M and PPT24. In
the following, we check the percentages of stations with decreasing, an absence of, or increasing trend in
ΔCRPS over time at a significance level of 0.05. In order to be more confident about the results, this analysis
is performed using both the parametric regression model and the nonparametric Kendall’s 𝜏 correlation
coefficient test. As already mentioned, both approaches correct for seasonal effects. Furthermore, in case
of T2M the same analysis has been performed additionally using BMA instead of EMOS in order to relax the
dependence on one particular postprocessing method. As shown in Table 1 the stations with no significant
trend outnumber the stations with either negative or positive trend for all three variables and lead times
considered. Note that the percentage of stations without any significant trend increases with increasing
lead time. In line with the results shown in Figure 2, significantly negative trends are more common than
positive ones for T2M and PPT24. The difference between the number of stations with negative and those
with positive trend reduces with increasing lead time, but is still greater than zero for a 10 day forecast. Note
that the high number of nonsignificant stations in case of PPT24 is likely to be due to the high variability of
precipitation amounts, and hence variability of CRPS values, which leads to a large residual standard error
in case of the parametric regression model and to a lot of pairs (a pair denotes here a value of ΔCRPS and
its associated time stamp) opposite to the estimated direction in case of the 𝜏 test statistics. In case of V10
the stations with a negative trend and those with a positive trend are almost equally frequent regardless of
the lead time. Figures of the global distributions of stations with no, significantly negative, and significantly
positive trend in ΔCRPS are available as supporting information to this paper.

5. Discussion and Conclusions

According to the above analyses, the gap in CRPS between the raw ensemble and the EMOS forecasts
remains almost constant over time. For T2M and PPT24 ΔCRPS shows a slightly decreasing tendency. The
higher the lead time, the less accentuated is this tendency. For V10 such a tendency cannot be detected.
The parametric regression model and the nonparametric 𝜏 test yield similar results. Hence, a linear model
that is overlaid by seasonal fluctuations seems to be reasonable. Note that the skill of the raw ensemble
and the EMOS forecasts may sometimes be negatively affected by upgrades to the atmospheric model.
Model upgrades may deteriorate raw ensemble skill at some individual stations. For instance, a resolution
increase may introduce new issues with statistical downscaling of the forecasts to some specific observa-
tion sites. But more importantly, the skill of the postprocessed forecasts can be lowered dramatically if a
model update happens between the training and the verification period. These issues may result in positive
trends in ΔCRPS. Ideally, postprocessing would be based on a cascade of reforecasts. That is, for each atmo-
spheric model version, training of the postprocessing model would be done using a corresponding time

HEMRI ET AL. ©2014. The Authors. 9203
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series of reforecasts made with that same model version. Furthermore, the observations may be affected by
measurement errors. If these errors change over time, they may also influence the estimates of the trends in
ΔCRPS. As the problems introduced by statistical downscaling may be mitigated by verifying against model
analysis, a similar study that replaces observations by model analysis, as proposed by Ghelli and Lalaurette
[2000] and Pappenberger et al. [2009], may give further insights.

Additionally, verification scores are affected by ensemble size [e.g., Richardson, 2001]. Let us assume the
hypothetical case of a perfect forecast distribution that equals the distribution of the stochastic process of
interest. A raw ensemble forecast sampled from this forecast distribution would then be reliable by defini-
tion. Nevertheless, the raw ensemble would only be a stepwise approximation to the underlying forecast
distribution. This would lead to an underperformance of the raw ensemble compared to the underlying
forecast distribution in terms of CRPS, because CRPS is a proper skill score [Gneiting and Raftery, 2007]. This
has to be kept in mind when comparing raw ensemble CRPS values with those values obtained from
continuous forecast distributions. But note that this does not mean that the continuous forecast distribu-
tions obtained by postprocessing equal the underlying distribution mentioned above. Ferro et al. [2008]
discuss the effect of ensemble size on CRPS. Hence, further analyses on the gap in skill between raw
ensemble and postprocessed forecasts may benefit from taking this effect into account.

From the above, we conclude that the probabilistic skill of both the raw ensembles and the EMOS forecasts
improves over time. The fact that the gap in skill has remained almost constant, especially for V10, suggests
that improvements to the atmospheric model have an effect quite different from what calibration by
statistical postprocessing is doing. That is, they are increasing potential skill. Thus, this study indicates that
(a) further model development is important even if one is just interested in point forecasts and (b) statistical
postprocessing is important because it will keep adding skill in the foreseeable future.
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Erratum

In the originally published version of this article, equation 10 contained a typographical error. The "w"
omega character was missing from the first line of the crps expression. The equation has since been cor-
rected, and this version may be considered the authoritative version of record. The authors thank Maxime
Taillardat for pointing out the error.
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